Lecture 10
Chapter 10: Further

abstraction techniques
Abstract classes and interfaces

Main concepts to be covered

» Abstract classes

— Classes we can’t instantiate

— Used only for inheritance
* Multiple inheritance

— Inheriting from more than 1 place
 |nterfaces

— Like abstract classes, but without code
— Allow multiple inheritance in Java

Simulations

* Programs regularly used to simulate real-
world activities.

— city traffic

— the weather

— nuclear processes

— stock market fluctuations
— environmental changes

Simulations

* They are often only partial simulations.

* They often involve simplifications.

— Greater detail has the potential to provide
greater accuracy.

— Greater detail typically requires more
resource.

* Processing power.
e Simulation time.

Benefits of simulations

* Support useful prediction.
— The weather.

* Allow experimentation.
— Safer, cheaper, quicker.

« Example:

— ‘How will the wildlife be affected if we cut a
highway through the middle of this national
park?’

Predator-prey simulations

* There is often a delicate balance between
Species.
— A lot of prey means a lot of food.

— A lot of food encourages higher predator
numbers.

— More predators eat more prey.
— Less prey means less food.
— Less food means ...

The foxes-and-rabbits project

SimulatorView Counter
> >
Simulator FieldStats
|
—» Field
>
P g
—P>
Location
e
>
>
Fox
>
Rabbit
—> -

Main classes of interest

e FOX

— Simple model of a type of predator.
 Rabbit

— Simple model of a type of prey.
e Si nul at or

— Manages the overall simulation task.
— Holds a collection of foxes and rabbits.

The remaining classes

e Fleld
— Represents a 2D field.
e Locati on
— Represents a 2D position.

e SI mul atorVvi ew, Fi el dSt at s,
Count er

— Maintain statistics and present a view of
the field.

Example of the visualization
£ Fox and Rabbit Simulation ol i

| [| |
Population: Fox: 52 Rabbit: 193

10

A Rabbit’'s state

public class Rabbit
{

Static fields omtted.
[/ 1 ndividual characteristics.

// The rabbit's age.

private I nt age;

/1 Whether the rabbit is alive or
private bool ean alive;

[/ The rabbit's position

private Location |ocation;

Met hod om tt ed.

not .

11

A Rabbit's behavior

 Managed by Rabbit. run()

* On each time step:
— Age incremented
— Rabbits can die of old age
— Rabbits that are old enough might breed
— New rabbits can be born

12

Rabbit simplifications

Rabbits do not have different genders.

The same rabbit could breed at every
step.

All rabbits die at the same age.
Others?

13

A Fox's state

publ i c class Fox

{

Static fields omtted

/'l The fox's age.

private I nt age;

/1 Whether the fox is alive or not.

private bool ean alive;

[/ The fox's position

private Location |ocation;

/[l The fox's food | evel, which Is I ncreased
/] by eating rabbits.

private int foodLevel;

Met hods om tt ed.

14

A Fox's behavior

Managed by Fox. hunt ()

Foxes also age and breed.
They become hungry.
They hunt for food in adjacent locations.

15

Configuration of foxes

« Similar simplifications to rabbits.

* Hunting and eating could be modeled in
many different ways.
— Should food level be additive?
— Is a hungry fox more or less likely to hunt?

» Are simplifications ever acceptable?

16

The Simulator class

* Three key components:

— Constructor creates field etc. objects
— The popul at e method.

« Each animal is given a random starting age.
— The si nul at eOneSt ep method.

* Initial version not very good

* |terates over the population.

« Checks type of each object and handles them
differently

 Two Fi el d objects are used: f1 el d and
updat edFi el d.

17

The update step

for(lterator iter = animals.iterator(); iter.hasNext();) {
Cbj ect aninmal = iter.next();

| f (ani mal instanceof Rabbit) {
Rabbit rabbit = (Rabbit)ani nal;
rabbit. run(updat edFi el d, newAni nal s);
}
el se if(ani mal instanceof Fox) {
Fox fox = (Fox)ani nal;
fox. hunt (field, updatedField, newAni mals);

 Foxes and rabbits are identified and handled

differently in Simulator class
18

Room for improvement

 Fox and Rabbi t have strong similarities
but do not have a common superclass.

 The SI mul at or s tightly coupled to

specific classes.

— It ‘'knows’ a lot about the behavior of foxes
and rabbits.

* A better way is to make an Animal
superclass

19

The Animal superclass

* Place common fields in Ani mal :
—age, al 1 ve, |l ocati on

* Method renaming to support information
hiding:
—run and hunt become act .

 SI mul at or can now be significantly
decoupled.

20

Revised (decoupled) iteration

for(lterator<Aninal> iter = animals.iterator();
Iter.hasNext();) {

Animal animal = iter.next();
ani mal . act(field, updatedField, newAninmals);

* Note use of Iterator object 1n for loop.
* While loop would be just as good.

21

The act method of Animal

Static type checking requires an act method
in Ani mal .
There is no obvious shared implementation.

We could implement an empty method:

public void act(Field currentField,
Fi el d updat edFi el d,
Li st newAni nal s)

{};
But there's no guarantee subclass will override
it.

22

Abstract classes and methods

Abstract methods have abst r act in the signature.
Abstract methods have no body.

Abstract methods make the class abstract.

Abstract classes cannot be instantiated.

In order to instantiate, subclass must override with concrete
(non-abstract) version.

Abstract version of aCt :

abstract public void act(Field currentField,
Fi el d updat edFi el d,
Li st newAni nal s) ;

23

The Animal class

publ i c abstract class Aninmal {
fields omtted

/**

* Make this animal act - make 1t do
* whatever 1t wants/ needs to do. */

abstract public void act(Field currentField,
Fi el d updat edFi el d,
Li st newAni nal s) ;

ot her nmet hods omtted

24

Why use Abstract Classes?

Same reasons as other superclasses:

* Provide code and data to inherit (promote
code reuse, avoid code duplication)

* Allow polymorphism (treat related types
as same)

Extra reason:

* Force/guarantee all subclasses to
implement some functionality

25

Simulating overriding fields

We want to move canBreed() into Animal

We want each class to set its own static
BREEDING AGE field value

Problem: you can’t override fields

Solution:

— use abstract getBreedingAge() in Animal
— override in subclasses
—add a BREEDING AGE to each subclass

26

Further abstraction

* Let’s add hunters and other actors
 Note abstract Animal class is part of hierarchy, like any other class

Simulator

Actor

-

AN

Animal Hunter

N

Rabbit Fox

27

Selective drawing
(multiple inheritance)

Suppose we only want to draw certain classes on screen

Drawable Actor

m Hunter

AN

Rabbit Fox Ant

Multiple inheritance

A class inheriting directly from multiple
superclasses.

Problem when 2 superclasses implement same
method.

— Which implementation to use?

— Each language has its own rules.

Java forbids multiple inheritance for classes.

Java permits it for interfaces.
— Have type, static fields, and method signatures only.

— Hence no competing method implementations.
29

An Actor interface

public interface Actor

{

/**

* Performthe actor's daily behavi or.
* Transfer the actor to updatedField if it is
* to participate in further steps of the sinulation.
* @aramcurrentField The current state of the field.
* @aramlocation The actor's |location in the field.
* (@aram updat edFi el d The updated state of the field.
*/
void act(Field currentField, Location |ocation,
Fi el d updat edFi el d);

30

Classes implement an interface

public class Fox extends Aninmal i nplenents Drawabl e

{
}

public class Hunter inplenents Actor, Drawable

{
}

Drawable and Actor are both made interfaces since they

Implement no code
31

Interfaces

Use keyword ‘interface’ instead of ‘class’
All methods are abstract and public

No constructors

All fields are public, static and final

Keywords abstract, public, static and final
not needed for methods or fields

Like abstract classes, they guarantee
implementation

32

Interfaces as types

Implementing classes
* do not inherit code, but ...
* ... are subtypes of the interface type.

So, polymorphism is available with
interfaces as well as classes.

33

Examples of Polymorphism

We can put any type of Drawable in a Drawable field:
Dr awabl e di;

dl new Rabbit () ;

dl new Fox();

We can iterate over a collection of Drawables, and ignore their
static type:

Arrayli st <Dr awabl e> drawabl es =
new ArrayLi st <Dr awabl e>() ;
|terator<Drawable> iter = drawables.iterator();
while (iter.hasNext())
{
Drawabl e item = iter.next();
ltem draw);

Interfaces as specifications

« Completely separate functionality from
Implementation.

— Though parameter and return types are specified.
* Clients (classes that use interface) see only
functionality.

— But clients can choose from alternative
iImplementations.

— E.g. 2 types of List

35

Alternative implementations

«interface»
List

implemeny Nﬂplements

ArrayList LinkedList

Same Functionality, Different
Implementations

Random access to middle is much faster
with ArrayList

Insert/delete can be much faster with
LinkedList

Which should we use?

Try both: only need to change 1 line:
private List nyList = new XXX;

37

Review: inheritance

* Inheritance can provide shared
implementation.

— Concrete and abstract classes.

* Inheritance provides shared type
information.

— Classes and interfaces.

38

Review: Abstract Classes

* Abstract methods allow static type
checking without requiring implementation.

» Abstract classes function as incomplete
superclasses.

— No instances.
» Abstract classes support polymorphism.

39

Review: Interfaces

* Interfaces provide specification without
implementation.
— Interfaces are fully abstract.

* Interfaces support polymorphism.

« Java interfaces support limited multiple
iInheritance:

— Type and constant fields only
— No code

40

Should | use an Abstract Class or
Interface?

Want to inherit code?
 Yes: use abstract class

* No: interface usually better, since they
don’t prevent implementor from extending
another class

41

