Lecture 8
Chapter 8: Improving structure
with inheritance

Main concepts to be covered

Inheritance

Subtyping
Substitution
Polymorphic variables

The DoME example

"Database of Multimedia Entertainment”

» stores details about CDs and videos
— CD: title, artist, # tracks, playing time, got-it,
comment
— Video: title, director, playing time, got-it,
comment
* allows (later) to search for information or
print lists

DoME objects

: CD

o

title

artist

#tracks

playing time

got it

comment

r

: Video

title

director

playing time

got it

comment

DoME classes (with details)

CD

title

artist
numberOfTracks
playingTime
gotlt

comment

Video

fop half

title

director
playingTime
gotlt
comment

_— shows fields

setComment
getComment
setOwn
getOwn

print

setComment
getComment
setOwn
getOwn

print

~__ bottom half
shows methods

A possible implementation

Blued Class diagram

Database

Video

CD

Note lack of detail: standard library classes not shown

7

CD
source
code

I

incomplete
comments!

|

public class CD {

private String title;
private String artist;
private String comrent;

CD(String theTitle, String theArtist)

{
title = theTitl e;

artist = theArti st;
conment = " “;

}

voi d set Comment (String newConment)

[...

String get Comment ()
{ ...}

void print()
{ ...}

public class Video {
private String title;

VldeO private String director:

private String coment;

source Vi deo(String theTitle, String theDirect)
{

COde title = theTitle;

director = theD rect;
coment =" ";:

}

voi d set Comment (String newConment)
{ ...}

[incomplete {Stri ng get Comment ()

comments! }
void print()

(...

public cl ass Dat abase {

private Arrayli st <CD> cds;

private Arrayli st<Vi deo> vi deos;

public void list()
{

for(lterator<CD> iter
CD cd = iter.next();
cd.print();
Systemout.printlin();

}

for(lterator iter <Video>
I ter.hasNext();) {

Vi deo video =
video. print();
Systemout.println();

cds.iterator();

Database
source code

| ter. hasNext ();
/[l enpty |line between itens

videos.iterator();

| ter.next();

/[l enpty |line between itens

)

Critique of DoME

e code duplication

— CD and Video classes very similar (large part
are identical)

— makes maintenance difficult/more work

— introduces danger of bugs through incorrect
maintenance

« code duplication also in Database class

11

Using inheritance

ltem

title
playingTime
gotlt
comment

setComment
getComment
setOwn
getOwn

print

CD

artist

numberOfTracks

getArtist

getNumberOfTracks

Video

director

getDirector

12

Using inheritance

define one superclass : ltem
define subclasses for Video and CD
the superclass defines common attributes

the subclasses inherit the superclass
attributes

the subclasses add own attributes

13

Inheritance hierarchies

nimal

e

Mammal

Al

AN

rd

AN

Cat

Chicken

X\

Poo

d

Dog
le

Dalmatian

Inheritance In Java

no change here

public class Item|—

{

} change here

'\ /\
public class Video %ﬂds @
{
}
public class CD extends Item

{
C .

Superclass

public class Item

{

private String title;
private i nt playingTinme;
private bool ean gotlt;
private String comment;

/] constructors and net hods

omtted.

16

Subclasses

public class CD extends Item

{

private String artist;

private I nt nunber O Tracks;

[/ constructors and net hods omtted.
}

public class Video extends Item

{

private String director;

[/ constructors and net hods omtted.

} 17

public class Item

{ Inheritance and

private String title;

private i nt playingTine;

private bool ean gotlt; (:()r]s;trlJ(:tC)rE;
private String comrent;

/**

* Initialise the fields of the i1tem
* [
public ltem(String theTitle, Iint tine)
{

title = theTitl e;

pl ayi ngTime = tine;

gotlt = fal se;

comment = ""

}

[/ methods omtted

} 18

{public class CD extends Item |nherltanCe and

private String artist;

private int nunber O Tr acks; COnStrUCtOrS

/**

* Constructor for objects of class CD

*/

public CO(String theTitle, String theArti st,
I nt tracks, int tinme)

{
super(theTitle, tine),;
artist = theArti st;
nunber & Tracks = tracks:
}

[/ nmethods omtted

19

Superclass constructor call

» Subclass constructors must always
contain a 'super’ call.

* If none is written, the compiler inserts one
(without parameters).

— If the superclass has no constructor without
parameters, error occurs.

 Must be the first statement in the subclass
constructor.

* Good style to always write super explicitly.

Adding more item types

Item

title
playingTime
gotlt
comment

CD

/\

artist
numberOfTracks

Video

* methods not shown

director

VideoGame

*

*

numberOfPlayers
platform

Easy: inheritance lets us reuse existing code

21

Deeper hierarchies

ltem

title

playingTime * methods not shown

gotlt

comment

/\
CD Video Game
artist director numberOfPlayers
numberOfTracks * *
VideoGame BoardGame
platform

* *

Review (so far)

Inheritance (so far) helps with:
* Avoiding code duplication

« Code reuse

« Easier maintenance

« Extensibility

23

{

publ i c cl ass Dat abase NeW

private ArrayList<ltenr itens; Database

/**

* Construct an enpty Database SOUFCe COde

*/
publ i ¢ Dat abase()
{ Compare to
itens = new ArraylList<ltenr(); earlier
} .
slide.
/**
* Add an itemto the database. :
hy Inheritance
public void addlten{ltemthelten avoids code
{ . .
i tens. add(thel tem; duplication
1 in client!
24

New Database source code

/**

*Print alist of all currently stored CDs and
* videos to the text termnal.

*/
public void list()
{
for(lterator<itenp iter = itens.iterator(); iter.hasNext();)
{
ltemitem= iter.next();
itemprint();
Systemout. println(); /] enpty line between itens
}
}

25

Subtyping

First, we had:
public void addCD(CD t heCD)

public voi d addVi deo(Vi deo t heVi deo)

Now, we have:
public void addlitemlItemtheltem

We call this method with:
Vi deo nyVideo = new Video(...);

dat abase. addl t en(nyVi deo) ;

26

Subclasses and subtyping

» Classes define types.
* Subclasses define subtypes.

* Objects of subclasses can be used where
objects of supertypes are required.
(This is called substitution .)

27

Subtyping and assignment

Vehicle

/3

Car

subclass objects
may be assigned to

superclass
Bicycle variables
Vehicle vl = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycl e();

Ok, since cars and bicycles are vehicles

28

Only substitute subtypes

Car cl
Car c2

new Vehicle(); [/ error
new Bicycle(); [/ error

Not ok:
A vehicle is not a kind of car
* A bicycle is not a kind of car

29

Subtyping and parameters

publ i c cl ass Dat abase

{
public void addltenm(lItemtheltem
{
}

}

subclass objects
Vi deo video = new Video(...); may bepassed
CD cd = new CIX...); to superclass

_ parameters
dat abase. addl t en(vi deo) ;

dat abase. addl t en{ cd) ;

30

Object diagram

: Database

items

/L f\%
)) 05 (5 [

31

Class diagram

Database

CD |

Big arrowheads indicate inheritance

Item

Video

32

Polymorphic variables

* Object variables in Java are polymorphic
— They can hold objects of more than one type

* They can hold objects of the declared
type, or of subtypes of the declared type

* Reminder: polymorphism allows us to
write code referring to a superclass, but
get run-time behaviour belonging to
different subclasses as appropriate

33

Limitations of inheritance

Inheritance is important but it has limitations,
including:
* A subclass inherits everything

— There is no good way to hide unwanted
inherited fields or methods

* Inheritance is a static relationship fixed at
compile time

— There is no way to change the
relationships between objects at run-time

* A class can only extend one other class

34

Alternatives to Inheritance

* In many situations there are better
alternatives: composition / delegation

—Many books overemphasise inheritance,
many designers overuse it

—More on this in a lecture on design

35

The Object class

Object

All Java classes

implicitly inherit
/ f \from Object.

String

Person

Vehicle

/3

Car

Bicycle

36

Polymorphic collections

« Untyped collections are polymorphic.

* The elements are of type Object.
public void add(Object el enent)

public Object get(int Index)

» Typed collections (Java 1.5) are polymorphic if
their type has subtypes

37

Casting revisited

Can assign subtype to supertype.

Cannot assign supertype to subtype!

bj ect lterator.get(int); error! get()
String s1 = myList.get(1); returns Object
Casting fixes this:

String s1 = (String) nyList.get(1);
(but only if the element really is a String)
Remember:

— Better to use typed collections

— Casting to different types when getting from
collections may indicate bad design

38

Wrapper classes

« Untyped collections accept any object because all
objects are subtypes of Object

« Typed collections can be made for any object type

« Great! But what about primitive types?

— They are not objects

— They must be wrapped inside an object to be added

to a collection

primitive type
int

float

char

wrapper class
Integer

Float
Character

39

Wrapper classes

* Let’'s add an int to a collection called myCollection

- 18: __— wrap the int value
| nteger twap = new Integer(i);
myCol | ect on. add(1 wr ap) ;

add the wrapper

| nteger elenent = (Integer) nyColl ection.get(0);
I nt value = el enent.intVal ue(); /

\

unwrap

retrieve the wrapper

40

Autoboxing

New in Java 5

Java automatically casts primitives into their wrapper
types and back (unboxing) as needed

Previous example becomes . :
i automatically wrapped

int i = 18; .

myCol | ect on. add(1i); and unwrapped

| nt eger elenment = (Integer) nyColl ection.get(0);
Or, if myCollection is typed as <Integer>

int i = 18;

myCol | ect on. add(i);

| nt eger el enment = nyCol |l ection.get(0); 41

Review

 |Inheritance allows the definition of classes as
extensions of other classes

* Inheritance
—avoids code duplication
—allows code reuse
—simplifies the code
—simplifies maintenance and extending

42

Review

« Variables can hold subtype objects (polymorphism)
— Polymorphism is a key OOP idea

— Subtypes can be used wherever supertype
objects are expected (substitution)

— Can only substitute subtypes for their supertypes

 Although inheritance is important it is often
overused

* Primitive types need to be wrapped before they can
be used in collections

— Prior to Java 5 (un)wrapping was manual

— In Java 5 (un)wrapping is automatic: called
autoboxing. +

