Lecture 8
Chapter 8: Improving structure
with inheritance



Main concepts to be covered

Inheritance

Subtyping
Substitution
Polymorphic variables



The DoME example

"Database of Multimedia Entertainment”

» stores details about CDs and videos
— CD: title, artist, # tracks, playing time, got-it,
comment
— Video: title, director, playing time, got-it,
comment
* allows (later) to search for information or
print lists
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DoME classes (with details)
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A possible implementation




Blued Class diagram

Database

Video

CD

Note lack of detail: standard library classes not shown
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CD
source
code

I

incomplete
comments!

|

public class CD {

private String title;
private String artist;
private String comrent;

CD(String theTitle, String theArtist)

{
title = theTitl e;

artist = theArti st;
conment = " “;

}

voi d set Comment (String newConment )

[ ...

String get Comment ()
{ ...}

void print()
{ ...}




public class Video {
private String title;

VldeO private String director:

private String coment;

source Vi deo(String theTitle, String theDirect)
{

COde title = theTitle;

director = theD rect;
coment =" ";:

}

voi d set Comment (String newConment)
{ ...}

[incomplete {Stri ng get Comment ()

comments! }
void print()

(...




public cl ass Dat abase {

private Arrayli st <CD> cds;

private Arrayli st<Vi deo> vi deos;

public void list()
{

for(lterator<CD> iter
CD cd = iter.next();
cd.print();
Systemout.printlin();

}

for(lterator iter <Video>
I ter.hasNext(); ) {

Vi deo video =
video. print();
Systemout.println();

cds.iterator();

Database
source code

| ter. hasNext ();
/[l enpty |line between itens

videos.iterator();

| ter.next();

/[l enpty |line between itens

)




Critique of DoME

e code duplication

— CD and Video classes very similar (large part
are identical)

— makes maintenance difficult/more work

— introduces danger of bugs through incorrect
maintenance

« code duplication also in Database class
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Using inheritance

ltem
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setComment
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director

getDirector
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Using inheritance

define one superclass : ltem
define subclasses for Video and CD
the superclass defines common attributes

the subclasses inherit the superclass
attributes

the subclasses add own attributes
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Inheritance hierarchies

nimal

e

Mammal

Al

AN

rd

AN

Cat

Chicken

X\

Poo

d

Dog
le

Dalmatian




Inheritance In Java

no change here

public class Item|—

{

} change here

'\ /\
public class Video %ﬂds @
{
}
public class CD extends Item

{
C .




Superclass

public class Item

{

private String title;
private i nt playingTinme;
private bool ean gotlt;
private String comment;

/] constructors and net hods

omtted.
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Subclasses

public class CD extends Item

{

private String artist;

private I nt nunber O Tracks;

[/ constructors and net hods omtted.
}

public class Video extends Item

{

private String director;

[/ constructors and net hods omtted.
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public class Item

{ Inheritance and

private String title;

private i nt playingTine;

private bool ean gotlt; (:()r]s;trlJ(:tC)rE;
private String comrent;

/**

* Initialise the fields of the i1tem
* [
public ltem(String theTitle, Iint tine)
{

title = theTitl e;

pl ayi ngTime = tine;

gotlt = fal se;

comment = ""

}

[/ methods omtted
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{public class CD extends Item |nherltanCe and

private String artist;

private int nunber O Tr acks; COnStrUCtOrS

/**

* Constructor for objects of class CD

*/

public CO(String theTitle, String theArti st,
I nt tracks, int tinme)

{
super(theTitle, tine),;
artist = theArti st;
nunber & Tracks = tracks:
}

[/ nmethods omtted
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Superclass constructor call

» Subclass constructors must always
contain a 'super’ call.

* If none is written, the compiler inserts one
(without parameters).

— If the superclass has no constructor without
parameters, error occurs.

 Must be the first statement in the subclass
constructor.

* Good style to always write super explicitly.



Adding more item types

Item

title
playingTime
gotlt
comment

CD

/\

artist
numberOfTracks

Video

* methods not shown

director

VideoGame

*

*

numberOfPlayers
platform

Easy: inheritance lets us reuse existing code
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Deeper hierarchies

ltem

title

playingTime * methods not shown

gotlt

comment

/\
CD Video Game
artist director numberOfPlayers
numberOfTracks * *
VideoGame BoardGame
platform

* *




Review (so far)

Inheritance (so far) helps with:
* Avoiding code duplication

« Code reuse

« Easier maintenance

« Extensibility
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{

publ i c cl ass Dat abase NeW

private ArrayList<ltenr itens; Database

/**

* Construct an enpty Database SOUFCe COde

*/
publ i ¢ Dat abase()
{ Compare to
itens = new ArraylList<ltenr(); earlier
} .
slide.
/**
* Add an itemto the database. :
hy Inheritance
public void addlten{ltemthelten avoids code
{ . .
i tens. add(thel tem; duplication
1 in client!
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New Database source code

/**

*Print alist of all currently stored CDs and
* videos to the text termnal.

*/
public void list()
{
for(lterator<itenp iter = itens.iterator(); iter.hasNext(); )
{
ltemitem= iter.next();
itemprint();
Systemout. println(); /] enpty line between itens
}
}
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Subtyping

First, we had:
public void addCD( CD t heCD)

public voi d addVi deo( Vi deo t heVi deo)

Now, we have:
public void addlitemlItemtheltem

We call this method with:
Vi deo nyVideo = new Video(...);

dat abase. addl t en( nyVi deo) ;

26



Subclasses and subtyping

» Classes define types.
* Subclasses define subtypes.

* Objects of subclasses can be used where
objects of supertypes are required.
(This is called substitution .)
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Subtyping and assignment

Vehicle

/3

Car

subclass objects
may be assigned to

superclass
Bicycle variables
Vehicle vl = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycl e();

Ok, since cars and bicycles are vehicles
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Only substitute subtypes

Car cl
Car c2

new Vehicle(); [/ error
new Bicycle(); [/ error

Not ok:
A vehicle is not a kind of car
* A bicycle is not a kind of car
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Subtyping and parameters

publ i c cl ass Dat abase

{
public void addltenm(lItemtheltem
{
}

}

subclass objects
Vi deo video = new Video(...); may bepassed
CD cd = new CIX...); to superclass

_ parameters
dat abase. addl t en( vi deo) ;

dat abase. addl t en{ cd) ;
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Object diagram

: Database

items

/L f\%
) ) 05 (5 [
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Class diagram

Database

CD |

Big arrowheads indicate inheritance

Item

Video
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Polymorphic variables

* Object variables in Java are polymorphic
— They can hold objects of more than one type

* They can hold objects of the declared
type, or of subtypes of the declared type

* Reminder: polymorphism allows us to
write code referring to a superclass, but
get run-time behaviour belonging to
different subclasses as appropriate
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Limitations of inheritance

Inheritance is important but it has limitations,
including:
* A subclass inherits everything

— There is no good way to hide unwanted
inherited fields or methods

* Inheritance is a static relationship fixed at
compile time

— There is no way to change the
relationships between objects at run-time

* A class can only extend one other class
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Alternatives to Inheritance

* In many situations there are better
alternatives: composition / delegation

—Many books overemphasise inheritance,
many designers overuse it

—More on this in a lecture on design

35



The Object class

Object

All Java classes

implicitly inherit
/ f \from Object.

String

Person

Vehicle

/3

Car

Bicycle

36



Polymorphic collections

« Untyped collections are polymorphic.

* The elements are of type Object.
public void add(Object el enent)

public Object get(int Index)

» Typed collections (Java 1.5) are polymorphic if
their type has subtypes
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Casting revisited

Can assign subtype to supertype.

Cannot assign supertype to subtype!

bj ect lterator.get(int); error! get()
String s1 = myList.get(1); returns Object
Casting fixes this:

String s1 = (String) nyList.get(1);
(but only if the element really is a String)
Remember:

— Better to use typed collections

— Casting to different types when getting from
collections may indicate bad design
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Wrapper classes

« Untyped collections accept any object because all
objects are subtypes of Object

« Typed collections can be made for any object type

« Great! But what about primitive types?

— They are not objects

— They must be wrapped inside an object to be added

to a collection

primitive type
int

float

char

wrapper class
Integer

Float
Character

39



Wrapper classes

* Let’'s add an int to a collection called myCollection

- 18: __— wrap the int value
| nteger twap = new Integer(i);
myCol | ect on. add( 1 wr ap) ;

add the wrapper

| nteger elenent = (Integer) nyColl ection.get(0);
I nt value = el enent.intVal ue(); /

\

unwrap

retrieve the wrapper

40



Autoboxing

New in Java 5

Java automatically casts primitives into their wrapper
types and back (unboxing) as needed

Previous example becomes . :
i automatically wrapped

int i = 18; .

myCol | ect on. add(1i); and unwrapped

| nt eger elenment = (Integer) nyColl ection.get(0);
Or, if myCollection is typed as <Integer>

int i = 18;

myCol | ect on. add(i);

| nt eger el enment = nyCol |l ection.get(0); 41



Review

 |Inheritance allows the definition of classes as
extensions of other classes

* Inheritance
—avoids code duplication
—allows code reuse
—simplifies the code
—simplifies maintenance and extending
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Review

« Variables can hold subtype objects (polymorphism)
— Polymorphism is a key OOP idea

— Subtypes can be used wherever supertype
objects are expected (substitution)

— Can only substitute subtypes for their supertypes

 Although inheritance is important it is often
overused

* Primitive types need to be wrapped before they can
be used in collections

— Prior to Java 5 (un)wrapping was manual

— In Java 5 (un)wrapping is automatic: called
autoboxing. +



