Lecture 3
Chapter 3: Object interaction

Creating cooperating objects

This Lecture

This lecture extends lecture 2 with:

* some techniques/concepts to help us
design code: abstraction and
modularisation

* object diagrams to help us visualise the
state of a running program

* more on creating objects and calling
methods

A digital clock

Let’s implement a digital clock:

11:03

Abstraction and modularization

* Modularization is the process of dividing
a whole problem into well-defined parts,
which can be built and examined
separately, and which interact in well-

defined ways

 Abstraction:
— treat each module as an atomic unit

— solve the problem at a high level before
solving each sub-problem

Modularization

Suppose you want to go to Spain on holiday

* You can divide the problem into modules:
— Getting to the airport
— Flying from Britain to Spain
— Getting from Spanish airport to your hotel
 Each module can be solved independently, which
simplifies things
— Use a taxi company to get to the airport, a travel
agent to get to Spain

and a shuttle bus to get to your hotel

* You can have a hierarchy of modules
— Getting to the airport has modules:
* Find the phone number of a taxi company
* Book a taxi
« Set your alarm
—Setting your alarm has modules...
Key points:
* Dividing a problem into smaller problems
simplifies things
 |f modules are independent they are easier to
solve

Top-down design

Do not start by planning how to set your
alarm

Do not start by planning how to get to the
airport
Instead, abstract over these details

— Assume you will figure out later how to
set your alarm and get to the airport

Start with the highest-level decision:

— Where in Spain do you want to go?
Madrid, Malaga, Granada...”?

 Now look at the next-highest decision:

— How should | get to Malaga”? Fly from
Bristol, Gatwick, Heathrow...?

— At this point think about flights and airports,
but abstract over how to get to the airport

 Now you can plan how to get to the airport
— But still abstract over how to set your alarm

 Eventually you can deal with how to set your
alarm

Key point:

— Working top-down as in this example is
usually a good strategy

Abstraction

* Abstracting over a module means: we assume
we will solve it later

— Completely ignoring parts of the problem is
asking for trouble

— But abstraction does not mean simply ignoring
parts of the problem

« Abstraction means ignoring the implementation of
other modules while we are implementing the
current one

 Although we defer the implementation of
modules, we decide:

— what modules the problem involves

— what each module does for us (e.g. gets us to
the airport)

— what each module requires (e.g. to be at the
airport before we can fly)

— we could call this the interface of the module,
as opposed to its implementation

\We can use the (interface of the) module in our
planning

* | know I'll get to the airport somehow... 1

Abstraction

* If we were to write code at an early stage of
planning it might look like this:

public void goToSpal n() {
goToAl rport();
flyToSpai n();
goToHot el ();

}

* We have written goToSpai n() before the
other methods (modules)

 That is, we abstract over the other modules

11

* Of course it doesn’t compile until we define all
the methods

« Although this is a very abstract, high-level
algorithm:

— It's nonetheless complete in the sense that
everything that must be done will be done
within one of the method calls

— It's useful as we can check that it's complete,
that things occurs in the correct order, that the
components are not mutually exclusive etc.

 |t's easier to solve the core of the problem at this
abstract level first, and then fill in the details later

12

Encapsulation

We can relate abstraction and modularization to
our other OO design principles

* Note how each module encapsulates part of the
problem

* Note how designing at an abstract level uses
this encapsulation to simplify solving the core of
the problem

* WWhenever you see a new design principle, you
should try to relate it to the others in this way

* This will deepen your understanding of what
they mean

13

Object-Oriented Design

* Planning a trip to Spain is really an
example of (part of) the problem of OO
design

—In general it's a very difficult problem

— There are methodologies which give us
step-by-step instructions for making
designs

—We will return to design and design
methodologies in later lectures

14

Modularizing the clock

11:03

Or two two-digit
displays?

One four-digit display?

11 || 03

Design - deciding what classes to use and how
they should interact - is one of the hardest

parts of OOP

15

Implementing the clock

Let’s use 2 classes:

In

NumberDisplay implements 2-digit displays
ClockDisplay implements the clock, using 2
NumberDisplay objects

OO terms:
We've modularised the problem into 2 parts

We've encapsulated displaying digits with one class
and clocks with another

We'll (re)use NumberDisplay within ClockDisplay to
obtain a 4-digit display

We can now even write some abstract code (next few
slides)

Once we've implemented our 2 classes, we could
reuse them in other applications

It's good to explicitly describe your design in such OO
terms to help make yourself (and others) conscious of
what is going on 16

Implementation -
NumberDisplay

publ i c class Nunber D spl ay
{

private int limt,;
private I nt val ue;

Constructor and
met hods om tt ed.

17

Using an abstract NumberDisplay

 Now we've decided to use a
NumberDisplay class, we can abstract
over it

» Specifically, we can refer to
NumberDisplay in ClockDisplay even
though we haven't finished writing
NumberDisplay
— Again, it won't compile yet, but we're making

progress with our design

— We'll implement the details of NumberDisplay
later 18

Implementation -ClockDisplay

public class C ockD spl ay

{
private Nunber D spl ay hours;
private Nunber D spl ay m nut es;
Construct or and
met hods omtt ed.

}

/] Note use of class NunberD spl ay
[/ as a type.

19

Class diagram

ClockDisplay

NumberDisplay

Arrow indicates ClockDisplay uses NumberDisplay

20

Object diagram

myDisplay:

ClockDisplay

hours

minutes

\

\

S

: NumberDisplay

11

'\

‘

: NumberDisplay

03

21

Class and object diagrams

Blued shows class diagrams only

Class diagrams are static: do not
change as program runs

Object diagrams are dynamic: change
as objects created/deleted during
program execution

You must learn to draw and think in
terms of object diagrams

22

Primitive types

* For efficiency Java stores some simple
kinds of data as primitive types: int, byte,
short, long, double, float, char, boolean

— The primitive types are built-in; you cannot
define new primitive types

— They are not objects
* You cannot e.g. associate methods with them

23

Object types

« Java has many built-in object types (e.qg.

String), and you can make new ones:
— Each Class is a type
« Some differences between primitive and
objects including:
— How they are stored
— What happens when you assign them

24

Primitive and object types

* Primitive variables store their values internally

* Object variables store a reference to the object
— The object itself is stored elsewhere

 Comparison to C:
— A reference is like a pointer in C

— Because all objects in Java are accessed through
references, things are much simpler than in C, where
we sometimes access things through pointers and
sometimes not

— Pointers are a major source of nasty bugs in C

25

Primitive and object types

object type
Some(nj ect obj ;) yP

— C)

\>

primitive type int i:

32

Primitive and object types

Consequence:

— When you assign primitive b to a, b’s value is copied
Into a

— When you assign an object b to a, only the reference
IS copied.

Result: you have 2 references to same object

* To copy the object you need to do something
else

« Of course an object can store primitive types
(and some do nothing else)

27

Primitive and object types

Some(bj ect a; Sone(bj ect b;
. e D
— //
N Y
b = a
I nt a,; | nt b;

28

Source code: NumberDisplay

public NunberDi splay(int rollOverLimt)

{

}

roll OverLimt:
0;

l1mt
val ue

public void increnment()

{

}
/]

/1
/1
/1

value = (value + 1) %limt;

Note: % is nodul o operator: returns
remal nder of integer division

E.g 15 %12 is 3

E.g. 15:00 hours is 3pm 29

Source code: NumberDisplay

public String get D spl ayVal ue()
{
| f (val ue < 10)
return "0" + val ue;:
el se
return

) /

p
Note: "" is an empty String.
This is a trick to convert val ue to a String

_ To match the return type)

+ val ue;

\

Objects creating objects

public class O ockD spl ay

{
private Nunber D spl ay hours;

private Nunber D splay m nutes;
private String displayString;

public O ockDi splay()

{
hours = new Nunber D spl ay(24);
m nut es = new Nunber D spl ay(60);
updat eDi spl ay() ;

}

Creating objects

On previous slide:
private Nunber D spl ay hours;

hours = new Nunber D spl ay(24);

 We use new followed by call to constructor to
make a new object.

* Note the special syntax for creating string objects
used earlier:
String nyString = “hel |l 0”;
not:
String nyString = new String(“hello”);

32

More of ClockDisplay

public void tinmeTick()
{
m nut es. i ncrement () ;
| f(m nutes.getValue() == 0) {
[/ 1t just rolled over!
hours.increnent();

}
updat eD spl ay() ;

33

Even More of ClockDisplay

/**

* Update the internal string that
* represents the display.
*/
private voi d updateD spl ay()
{
di splayString =
hours. get Di spl ayval ue() + ":"
m nut es. get Di spl ayVal ue() ;

34

Object interaction

* Now we've seen the source code for both
classes

* Next let's look more closely at their
interaction

35

ClockDisplay object diagram

myDisplay:

ClockDisplay) .
: NumberDisplay

hours ..
limit 24

L >
minutes
\\ value | 15

N

\
: NumberDisplay

limit 60

value | 23

Objects creating objects

in class NumberDisplay:

publ i c NunberD splay(int roll OverLimt);

formal parameter

in class ClockDisplay:
hours = new Nunber Di spl;
actual parameter

(Formal and actual parameters are the same as in C)

37

Internal and external calls

* |nternal method calls are to methods in the
same class

methodName (parameter-list)

 External method calls are to methods In
other classes

object . methodName (parameter-list)

38

Method calls in ClockDisplay

* internal method call
updat eDi spl ay();

private voi d updateD splay()

e external method call

m nutes.increnmnent();

39

Scope and “this”

 From Chapter 2:
— A variable can only be used within its scope
— The scope of a parameter is its method
— The scope of a field is the entire class

 What happens if a parameter and field have the
same name”?

— Java uses the definition from the closest enclosing
block, i.e. the parameter.

— We can still access the field using ‘this’
— You can read ‘this’ as ‘this object’

40

This

public class Mailltem{
private String from
private String to;

public Mailltem(String from String to){
this.from= from
this.to = to;

}

°]:I'he value of parameter f r omis assigned to field
rom

* Note we can also return the current object with:
return this;

41

Concepts

abstraction * primitive types
modularization * object types
top-down design * object creation
encapsulation * internal/external
classes define types method call
class diagram * debuggers

object diagram
object references

TCovered 1n chapter 3 of text but not in handout

42

Extra Material

* The following is extra material for
reference

* You should not need it to complete the
assignments

43

Numbers In Java

In Java the size of primitives is the same no matter what
OS you run (unlike C)

— This helps make Java code portable

Use int for small integers, long for big ones, and double
for real values

No warning is given for over/underflows
Rounding errors can occur with real values
double f = 4. 35;

System out. println(100*f);

[l prints 434.99999999999994

Use Biglnteger and BigDecimal classes for arbitrary
precision calculations

44

Range of common Java numbers

Type Range Bytes

int -2,147,483,648 ... 4
+2,147,483,647

long -9,223,372,036,854,775,808... 8
+9,223,372,036,854,775,807

float About £ 1038 and 7 significant digits |4

double About £ 10308 and 15 sig. digits 8

45

